Principal Component Analysis of Phenolic Acid Spectra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Analysis of Spectra

This paper discusses principal component analysis (PCA) of integral transforms (spectra and autocovariance functions) of time-domain signals. It is illustrated using acoustic emissions from mechanical equipment. It was found that acoustic signals from different stages of operation appeared as distinct clusters in the PCA analysis. The clusters moved when machinery faults were present and the mo...

متن کامل

Principal Component Analysis of Synthetic Galaxy Spectra

We analyse synthetic galaxy spectra from the evolutionary models of Bruzual & Charlot and Fioc & Rocca-Volmerange using the method of Principal Component Analysis (PCA). We explore synthetic spectra with different ages, star formation histories and metalicities, and identify the Principal Components (PCs) of variance in the spectra due to these different model parameters. The PCA provides a mor...

متن کامل

Principal Component Analysis of AGN Spectra

We discuss spectral principal component analysis (SPCA) and show examples of its application in analyzing AGN spectra in both small and large samples. It can be used to identify peculiar spectra and classify AGN spectra. Its application to correlation studies of AGN spectral properties and spectral measurements for large samples is promising.

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Spectroscopy

سال: 2012

ISSN: 2090-8776

DOI: 10.5402/2012/493203